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PREDICTION OF DATA IN THE INSURANCE INDUSTRY BASED
ON NEURAL NETWORK METHODS

The paper presents a comparative analysis of the generalized linear regression model with the leading machine learning method
Feed Forward Neural Network (FFNN) from the point of view of predicting counting data. These two models are described and compared
from a theoretical and practical point of view. The stability of the models on the bicycle rental data set is checked, their accuracy is evalu-
ated, the learning curves are built on test and training data sets. In order to improve the interpretability of models, the importance of input
variables is evaluated. Because FFNN is often called the “black box” method, there is no direct way to evaluate the importance of vari-
ables. A new indirect method for assessing the importance of variables for deep neural networks based on the principles of information
theory is proposed. It has been demonstrated that the FFNN network provides much better predictive power compared to the generalized
linear regression model with a slight increase in model complexity.

Keywords: generalized linear regression model of Poisson, Feed Forward Neural Network, Poisson distribution, machine learning,
bicycle rental dataset.

Tynko H.M., Bacuneesa H.C., Bacunbes 0.5. MPOFHO3YBAHHSA OAHUX MIAPAXYHKY Y CTPAXOBIW FANY31 HA OCHOBI
METO[IB HEMPOHHUX MEPEX

MporHosyBaHHA AaHUX NiApaxyHKy — OfHa 3 KIYOBUX 3afadv y CTpaxoBiv ranysi, eKoHoMili Ta couianbHux Haykax. Perpe-
CilHWMI aHani3 3a3BuYyai BiAHOCUTbLCS A0 KNACMYHOro NigxXo4y ANns BUPiEHHN uiei 3agadi. OgHak knacuyHa perpecinHa mogenbs
lMyaccoHa 4YacTo Mmae obmexeHe 3aCTOCYBaHHSA, OCKiNbKM eMMipuyHi Habopu AaHuX MigpaxyHKy 3asBuyan OEeMOHCTPYHOTb Be-
MUKy AMCNEepCilo Ta HaAMIPHY KiNbKIiCTb HYNiB, a OTXe He30anaHCOBaHICTb Y AaHHMX. 3BaXaroun Ha Le, a TakoX Ha No3UTUBHI
pesynbTaT MalWHHOIO HAaBYaHHSA y Pi3HWUX ranyssx, po3rnsHyTO MOro Sk AOCTOWHY anbTepHaTMBY KnacuM4yHOMYy nigxody. Y uin
po60Ti NPOBOANUTLCS NMOPIBHANBHWIA aHani3 y3aranbHeHoi MiHiHOI perpecinHoi mogeni MyaccoHa (GLM) 3 HepOHHO Mepexeto
npsimoro nowupeHHsa (Feed Forward Neural Network — FFNN), wo € npoBigHUM MeTOA0M MalIMHHOIO HaBYaHHS, 3 TOYKM 30pYy
NPOrHo3yBaHHA AaHWUX NiApaxyHKY i NoA4anbLOro BUKOPMUCTaHHA Ha npaktuui. CtatTa onvcye ABi Mogeni Ta NopiBHIOE iX 3 Teo-
PEeTUYHOT Ta NPaKkTUYHOI TOYOK 30py. [poTecToBaHO iX CTiNKiCTb, BUKOPUCTOBYOUM HAbip AaHUX Npo npokaTt Benocunedis. Ans
KpaLLloro po3yMiHHA MoZenewn, OUiHI0ETbCA X TOYHICTb Ta OyayThCa KPMBI HABYaHHS HA TECTOBUX | HAaBYanbHUX Habopax. Kpim
TOro, OLIHIOETBCA BAXNMBICTb BXiAHMX 3MIHHMX AN Kpawoi iHTepnpeTauii anroputmie. Ockinbkn FFNN € Tak 3BaHMM mMeTogoM
«YOPHOT CKPUHBbKUY, ANA HbOTO HE iCHYE MPSIMOro cnocoby OUiHKM 3MiHHWUX. 3anponoHOBaHO HOBY TEXHOMOFIO OLiHKM BaXXMBOCTI
BXiAHMX AaHUX Ans rmnbokux HEWPOHHMX Mepex BiAnoBiAHO A0 NpuHUMMIB Teopii iHpopmauii. Y poboTi NpoaeMoHCTpoBaHo,
WO HelpoHHa mepexa npsimoro nowupeHHs (FFNN) y nopiBHSIHHI 3 y3aranbHeHo NiHiHOKW perpeciiHoto mogennto MyaccoHa
(GLM) 3abesneuye HabaraTo Ginblly NOTYXHICTb NPU He3Ha4yHOMy 36inblUeHHi cknagHocTi mogeni. MNpu nobyaoBi HEMPOHHUX
Mepex BUKOPUCTOBYBaNMCh CTaHA4APTHI NakeTn MoBM NnporpamyBaHHsa Python, ski MOxHa LWBMAKO afanTyBaTu 4o iHWMX Habopis
naHux. Tomy niaxig, 3anponoHOBaHMI y AaHiv cTaTTi, MOXHA YCMilLHO BUKOPWUCTOBYBATW NPW BUPILLEHHI BaraTbox iHWNX €KOHO-
Mi4YHMX 3aday. Anroputmu, nobynoBaHi 3a AONOMOroK MAlUMHHOTO HaBYaHHS, TOYHILLE NPOrHO3YThb AaHi NiAPaxyHKy i MOXyTb
CNYXUTW OOPUM OPIEHTUPOM ANSA iHWNX MoAenen.

KntoyoBi cnoBa: y3aranbHeHa niHinHa perpeciiia Mogenb yaccoHa, HEeMpOHHa Mepexa NPSIMOro NMOLUMPEHHS, MyaCCOHOBCHKMNIA
po3nogain, MalnHHe HaBYaHHS, Habip AaHWX NPo NpokaT Benocunesais.
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Tynko H.M., Bacunwesa H.C., Bacunbes A.5. MIPOFHO3UPOBAHMUE OAHHbLIX MOACYETA B CTPAXOBOM OTPACIU HA

OCHOBE METOO0B HEMPOHHbIX CETEN

B paboTe npeacTaBneH CpaBHUTENbHbIN aHanma 0606LLEHHON NMMHENHON PErPeCCUOHHON MOAENW C BEAYLLMM METOAOM MALUVHHOTO
00y4eHunsi Ha ocHoBe rmy6okoin HepoHHoW ceT FFNN ¢ Touky 3peHust NporHo3MpoBaHns AaHHbIX nogcyeTa. OTu ABe MOAENN ONUCHI-
BAOTCS U CPABHUBAKOTCS C TEOPETUYECKOW M NPAKTUYECKON Touek 3peHust. MpoBepsieTcst yCTOMYMBOCTL MOAerne Ha Habope AaHHbIX
00 apeHZe BenocunenoB, OLEHNBAETCA MX TOYHOCTb, CTPOSITCA KpvBble 0OyYeHUs Ha TeCTOBbIX M 0Oyvatolmx Habopax AaHHbIX. C
Lenblo YNyYlleHUs UHTEPNPETUPYEMOCTN MOAENEN OLEHMBAETCH BaXHOCTb BXOAHbIX NepeMeHHbIx. Mockonbky FFNN yacTo HasbiBatoT
METOAOM KYEPHOTO SALLMKa», TO B 3TOM CIly4ae He CyLLeCTBYET NPsIMOro cnocoba OLEHKM BaXXHOCTV NepeMeHHbIX. B pabote npeanoxeH
HOBbI KOCBEHHbIN METO[, OLIEHKN BaXKHOCTU BXOAHBIX AAHHBIX ANS rMyOOKMX HEMPOHHbLIX CETeW, OCHOBaHHbLIN Ha MPUHLUMMIAX Teopun
nHpopmaumm. MpoaemMoHCTpMpoBaHo, YTo HelpoHHas ceTb FFNN obecneyvBaeT HAMHOrO NyuLLyH NpeackasaTeribHy cuiy no cpae-
HeHUIo ¢ 0606LLEHHOW NIMHENHON PErPECCUOHHON MOAENbLIO NPU HEBOMbBLLOM YBENUYEHWUN CIIOKHOCTU MOGENMN.

KniouyeBble crnoBa: 0606LEHHas NUHeiHas perpeccMoHHas Mogens lNyaccoHa, HEMPOHHas CeTb NPSIMOrO PacnpoCTPaHeHus, ny-
aCCOHOBCKOE pacnpeerneHune, MallnHHoe obyyeHne, Habop AaHHbIX MO NpoKaTy BenoCcUneaos.

Problem statement. Poisson distribution, that is
mainly considered in this paper, serves to model occur-
rences of the events, such as number of phone calls at
service center, arrival times of customers, occurrences
of natural disasters, number of insurance claims etc.
Wide application of the Poisson distribution implies
its parameters estimation being an actual problem.
Till now regression analysis, namely generalized linear
regression model of Poisson (GLM), was the common
approach to deal with it. The problem of this article
is to design a alternative deep learning network algo-
rithm for count data prediction using log-likelihood for
Poisson distribution as a cost function and accuracy as
a performance metric. Accuracy and run time of the
algorithms GLM and FFNN have to be compared with
the benchmark and analysed accordingly. Finally, the
performance of the FFNN algorithm should be suffi-
ciently high, and numerical measures of feature impor-
tance has to be provided.

Analysis of recent research and publications.
We will make a brief review of the latest research and
publications on this topic. The book [3] represents GLM
as a core approach in non-life insurance and the whole
insurance industry as well. The book covers Poisson,
binomial and negative binomial distributions from
exponential family as commonly applied to count data.
Although GLM is a widely used prediction algorithm,
[3] reveals a number of challenges the method brings
out. In the first place, it has manual feature engineer-
ing process that is error-prone and extremely resource
demanding. This way sets up a functional representa-
tion of the features dependence a priori and hence nar-
rows down a hypothesis space drastically.On the other
hand, [5] proves deep neural network to follow the
opposite way. Generally speaking, its cost function is
represented as a composition of weight matrices. This
enables an automatic feature engineering which implies
much powerful hypothesis space. Theoretical reasoning
of [5] as well as [4] and [6] goes along with practical
evidence. An article [1] demonstrates advantage of neu-
ral networks and the other machine learning methods
to compare with GLM in scope of predicting number
of spikes.

Selection of previously unsolved parts of the com-
mon problem. A major concern regarding deep neural
network algorithm is a high model complexity followed
by increasing computational time and low interpreta-
bility of the results. Linear model, in contrast, demon-
strates simple and clear model structure together
with neglectable run time. In particular, it allows for
a straightforward evaluation of feature importances.
On the other hand, deep neural networks can poten-
tially cover much wider set of the hypothesis and hence
explaine much more complex data structure, which
means more powerful predictions in comparison to
GLM. Consequently, a researcher often faces a problem

of a choice between the algorithms. Thus, core open
questions are: 1) does the performance of deep neural
networks outweigh its complexity; 2) what quantitative
metrics are there to evaluation feature importance of
the input variables for deep neural networks?

The purpose of this study is application of Feed
Forward Neural Networks model for count variables
prediction based on given input features, as well as
to compare the efficiency and accuracy of this model
with the characteristics of classical regression mod-
els. On top of that, we aim to increase interpretabil-
ity of FFNN and give a qualitative assessment of the
predictions.

Presentation of the main research results. We turn
to the presentation of the main results of this work.
First of all, we will set the initial dataset for construct-
ing the compared models.

I. DATA

Hourly bike rental data during two years
2011-2012 in Germany are provided as a dataset [7].
Generally, variables describe total number of rented
bikes, weather conditions and timestamp.

A. Data description

Table 1 describes meaning of response “casual” and
the other variables, their domains and transformations,
which ensures correct interpretation of the variables
before feeding in the models. More detailed explanation
follows accordingly.

B. Data preparation

Row data are often not appropriate for analysis
or misleading. For example, they could be charac-
ters while algorithm requires numerical one; continue
ordinal effects being categorical; have large variance
incomparable with the other numerical variables.

To get correct input data the following techniques
are usually implied.

Normalization

Normalization is applied to numerical columns to
use the common scale, so that no information is lost and
no difference in the range of values are made. Other-
wise it could lead to extremely large or extremely small
weights while combining these variables by modeling.

For instance, to make variable “temp” (<=40) more
influential than “humidity” (<=100) we need at least
twice bigger weights.

There are multiple techniques of normalization, but
here we change all values to a 0-1 scale as following:

Xoorm :(xrm'g - xmax) / Xmax € [Oal] ) (1)
X,,, — original variable,

— variable maximum,

X.om — resulting normalized variable.

OHE

One hot encoding (OHE) or dummy encoding is a
technique which represents categorical variable in
numerical form without keeping ordinal effect in it.
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Table 1
Description of response variable and input features
Variable name Values Transformation* Description
casual int, >=0 no transformation number of rentals
; . . ohe(Y,M,D,H) ;
datetime %Y-%m-%d %H:%M:%S norm(dist_in_hrs) date and time of rental
1 [spring],
season g ?;aner]’ ohe season
4 [winter]
holiday 0/1 ohe if the day is identified as a holiday
. if the day is identified neither a weekend
workingday 0/1 ohe nor holiday
1 [clear or partly cloudy]
2 [mist and/or partly cloudy]
weather 3 [light snow or rain] ohe weather type
4 [heavy rain or snow]
temp Real norm temperature in Celsius
atemp Real norm subjective feeling of temperature in Celsius
humidity real, >=0 norm relative air humidity
windspeed real, >=0 norm wind speed

* “ohe” and “norm” abbreviations are explained in subsection B. Data preparation.

It namely represents a feature as a set of binary vec-
tors. Each level m out of M possible is represented as
a vector that has all zero values except the index of the
level i, which is marked with 1. Eventually, we get M
vectors, one of them is linearly dependent on the other
M -1 and thus redundant. Hence, we keep only M -1
binary vectors over the original feature.

For example, variable “weather” is categorical but
encoded as numerical, 1...4.

To remove order effect (1<4) we use the following
split of the column:

Weather w_1 w2 |wd| wid
1 1 0 0 0
2 1 0 0
0
4 0 0 1
4 0 0 1
0
3 0 0 1 0

Figure 1. One hot encoding of feature “weather”

Date

The input sample is assumed to be mutually inde-
pendent, thus “datetime” variable is proceed as
following:

— hour, day and month are treated as categorical to
capture circularity effects. OHE is applied;

— artificial variable “date diff inHRS” is created
to measure distance of an instance to minimal date in
hours and keep order between them. Normalization is
applied.

Data split

Data are split into two subsets train, 80% of data, and
test, 20% of data. The first one is used to train model and
estimate its parameters. The latter one is used to get an
unbiased estimation of model predictive power.

To get a uniform subsets and hence more represent-
ative training, we applied the stratified shuffle split.
The folds are made in a way to preserve the distribu-
tion of the response. As its values are (theoretically)
unlimited from above a shuffling that splits data by
equal ratios of response classes is not possible. Thus
shuffling by indices was applied.

In the paper the depth of the datasets for training
and testing is 8735 and 2151 rows respectively.

II. METHODS

Neural Networks proved to be powerful in a wide
scope of applications. In contrast to Recurrent Neural
Networks, Feed Forward Neural Networks model data
without sequential dependence. As described in chap-
ter II, we assume the instance of the bike dataset to
be mutually independent. On the other hand, GLM is
treated as a baseline. It has much lower model capacity
than NN but is still widely used in practice. Combining
with the fact of the response variable being a positive
integer, we assume the data to follow conditional Pois-
son distribution. Hence, loss function is logarithmic
likelihood with Poisson distribution. Accuracy is an
intuitive performance metric suitable for the datasets
with a balanced distribution. We consider it as a suita-
ble performance metric for our dataset.

A. Generalized Linear Regression Model

The Poisson generalized linear model is a multivar-
iate regression model, where response variable follows
Poisson distribution and its expected value is mod-
elled as a linear combination of unknown parameters
(weights). Mathematically it is described as following.
If x eR" is a vector of independent variables y e R - is
a response variable, which follows Poisson distribution
with expected value of:

logE(y | x)=a +B'x, (2)
where o e R,peR",
or equivalently:
logE(y | x) =0'x, 3)
where 0eR",x e R"™!,
and there is a dataset consisting of m vectors

x;eR"ie[l,...,m] and a set of m values y,...,y, eR
then probability of attaining them has a closed form of:

m oV 'e—e*""'
P(Yioeos YulXisos X,30) = HT =LO|x,y) (4
il i

and called a likelihood.
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Estimation of parameter 6 so that this probability
is maximized is called a method of maximum likeli-
hood. In practice minus log likelihood is used as a cost
function in a minimization problem:

m

1(0lx,y) = log L(6lx, ) = Z(y,.e’xi —e" — logy!) 5)

i=1

In our case m=8735, n="74; as an optimization
method Nadam [4], which is Adam RMSprop with Nes-
terov momentum, is used in paper implementation.

B. Neural Network

Here, we implemented a 4-layer FFNN. It could be
considered as embedding of GLM, where each layer is
taking the output of previous layers as input. Mathe-
matically speaking, we need to minimize the same loss
function /(6lx,y) but instead of scalar product of 0'x,
we use weights’ matrix [5].

The nature of the response implies an output
activation function. In our case, it could be rectified
linear unit (ReLU): x* = max{0,x}. However, we chose
its “smoothed” (everywhere differentiable) version
called softplus: y= ln(l + e") to avoid problems in the
gradient-based optimization. On the other hand, the
activation function for hidden layers can have an
arbitrary shape but it should eliminate vanishing
gradient effect in backpropagation. Thus we prefer
both ReLU and softplus over sigmoid and hyper-
bolic tangence as activation functions for hidden
layers [6].

III. RESULTS

We explain why one-layer neural network is equiv-
alent to GLM in chapter II. Using this reasoning, we
implement both models within neural network frame-
work using open-source Keras library, running Theano
as the backend [2].

To make the results comparable, we evaluated perfor-
mance of the algorithms on the same test set. The data-
set was split into train and test using stratified shuffle
split as explained in chapter I. The major parameters of
the algorithms are summarized in Table 2.

GLM is a straightforward method that allows only
linear interaction among its parameters. Thus, it is
unable to describe complex feature dependencies. For-
mally speaking, the key limitation of GLM is fairly

Table 2
Parameters and results of glm and ffnn models
Parameters GLM FFNN
number of layers 1 4
activation function Softplus
loss function Poisson
batch size 50
Number of epochs 50

Test accuracy

0,8
0,6
0,4

0,2

GLM Neural Network

Figure 2. GML and FFNN accuracy based on test set

small hypothesis space. Based on the above, we have
not expected it to work well. “Figure 2” summarizes
accuracy of the algorithms:

The accuracy of the FFNN is 0.8154 on the test
set, which means that the networks algorithm out-
performed GLM in accuracy by 0.1664 (16.64%). The
computational time increased from 10.54 min (GLM) to
25.67 min (FFNN). Learning and validation curves of
the algorithms enable analyzing learning progress in
more detail. As the GLM curves are constantly decreas-
ing (Figure 3), no stopping criteria was triggered. This
means, that the model is underfitted or not “compli-
cated enough” to capture the majority of dependency
patterns, present in data. This goes along with rela-
tively low accuracy of GLM which is just slightly better
than random.

— loss
val_loss

0.9

0.8

07

06

05

04

Figure 3. Learning and validation curves
of GLM model (without early stopping)

To get the better insight into the modes and valid-
ity of their predictions, let us further analyze the
resulting feature importance. Linear structure of
GLM allows to evaluate the most influential features
directly. There are plots of all weights (Figure 4) and
16 feature of the biggest weights in absolute terms
(Figure 5).

Conclusions from the conducted research. GLM
is a straightforward method that allows only lin-
ear interactions among its parameters, this means
it is equivalent to one-layer neural network. Hence,
we have not expected it to work well in comparison
to multi-layer network. Our research demonstrates
that FFNN provides much better predictive power
indeed with a slight increase in model complexity.
As far as we use a standard Python packages, FFNN
can be quickly applied to other datasets. This fact
ensures our results to be replicable and to be used for
much wider range of tasks and data than given here.
Our study demonstrates machine learning predictive
models to forecast count data more accurately and to
serve as a benchmark for other models. In addition,
we suggest a new technique for evaluation of feature
importances for FFNN. As far as deep neural net-
works are often referred to “black box” algorithms,
there is no straightforward method to score impor-
tances in contrast to the one by GLM. Hence, we sug-
gest new indirect way of the evaluation in terms of
the information theory. It implies that the amount of
information of variable and its variance are closely
related. Thus, we could compare an original variance
of the response to the one, after an increase of a
feature variance by say 10%. If the response is rel-
atively insensitive to fluctuations in the future val-
ues, then we assume it to be less informative, and
hence, less important.
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Figure 5. 16 the biggest weights of features outputted by GLM in absolute terms
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